Umuc biology lab 3: cell structure and function

Your Full Name: 

Don't use plagiarized sources. Get Your Custom Essay on
Umuc biology lab 3: cell structure and function
Get an essay WRITTEN FOR YOU, Plagiarism free, and by an EXPERT!
Order Essay

UMUC Biology 102/103
Lab 3: Cell Structure and Function
INSTRUCTIONS:

• On your own and without assistance, complete this Lab 3 Answer Sheet electronically and submit it via the Assignments Folder by the date listed in the Course Schedule (under Syllabus).
• To conduct your laboratory exercises, use the Laboratory Manual located under Course Content. Read the introduction and the directions for each exercise/experiment carefully before completing the exercises/experiments and answering the questions.
• Save your Lab 3 Answer Sheet in the following format:  LastName_Lab3 (e.g., Smith_Lab3).
• You should submit your document as a Word (.doc or .docx) or Rich Text Format (.rtf) file for best compatibility.

Pre-Lab Questions

1. Identify three major similarities and differences between prokaryotic and eukaryotic cells.

 

2. Where is the DNA housed in a prokaryotic cell? Where is it housed in a eukaryotic cell?

 

3.  Identify three structures which provide support and protection in a eukaryotic cell.

Experiment 1: Cell Structure and Function
The structure of a cell dictates the majority of its function. You will view a selection of slides that exhibit unique structures that contribute to tissues function.

Materials:
Onion (allium) Root Digital Slide Images

Procedure
1. Examine the onion root tip digital slide images on the following pages. Then, respond to the Post-Lab Questions.
 
Onion Root Tip: 100X

 
Onion Root Tip: 1000X

 
Onion Root Tip: 1000X

 

 
Onion Root Tip: 100X. Each dark circle indicates a different nucleus.

 
Onion Root Tip: 1000X

Post-Lab Questions
1. Label each of the arrows in the following slide image: A=Chromosomes, B=Nucleus, C=Cytoplasm, D=Cell Wall
 

2. What is the difference between the rough and smooth endoplasmic reticulum?

 

3. Would an animal cell be able to survive without a mitochondria? Why or why not?

 

 

4. What could you determine about a specimen if you observed a slide image showing the specimen with a cell wall, but no nucleus or mitochondria?

 

5. Hypothesize why parts of a plant, such as the leaves, are green, but other parts, such as the roots, are not. Use scientific reasoning to support your hypothesis.

Experiment 2: Osmosis – Direction and Concentration Gradients
In this experiment, we will investigate the effect of solute concentration on osmosis. A semi-permeable membrane (dialysis tubing) and sucrose will create an osmotic environment similar to that of a cell. This selective permeability allows us to examine the net movement of water across the membrane. You will begin the experiment with a 30% sucrose solution, and perform a set of serial dilutions to create lower concentration solutions. Some of the sucrose concentrations will be membrane permeable; while others will not be permeable (can you determine why this is?).

Materials
(3) 250 mL Beakers
(1) 10 mL Graduated Cylinder
(1) 100 mL Graduated Cylinder
Permanent Marker
*8 Rubber Bands (2 blue, 2 green, 2 red, and 2 yellow)
60 g Sucrose (Sugar) Powder, C12H22O11
4 Waste Beakers (any volume)
*Paper Towels
*Scissors 
*Stopwatch
*Water
*(4) 15 cm. Pieces of Dialysis Tubing
*Contains latex. Please handle wearing safety gloves if you have a latex allergy.

*You Must Provide

*Be sure to measure and cut only the length you need for this experiment. Reserve the remainder for later experiments.  

Procedure
1. Use the permanent marker to label the three 250 mL beakers as 1, 2, and 3.
2. Cut four strips of dialysis tubing, each 15.0 cm long. Fill Beaker 3 with 100 mL of water and submerge the four pieces of dialysis tubing in the water for at least 10 minutes.
3. After 10 minutes, remove one piece of tubing from the beaker. Use your thumb and pointer finger to rub the tubing between your fingers; this will open the tubing. Close one end of the tubing by folding over 3.0 cm of one end (this will become the bottom). Fold it again and secure with a yellow rubber band (use
4. Tie a knot in the remaining dialysis tubing just above or just below the rubber band. This will create a seal and ensures that solution will not leak out of the tube later in the experiment.
5. To test that no solution can leak out, add a few drops of water to the tubing and look for water leakage. If any water leaks, tighten the rubber band and/or the knot in the tubing. Make sure you pour the water out of the tubing before continuing to the next step.
6. Repeat Steps 4 – 5 with the three remaining dialysis tubes, using each of the three remaining rubber band colors.
7. Reconstitute the sucrose powder according to the instructions provided on the bottle’s label (your kit contains 60 g of sucrose in a chemical bottle) . This will create 200 mL of a 30% stock sucrose solution.
8. Use Table 2 to create additional sucrose solutions that are 30%, 15% and 3% concentrated, respectively. Use the graduated cylinder and waste beakers to create these solutions. Set these solutions aside.
Table 2: Serial Dilution Instructions
Sucrose Solution mL of Stock Sucrose Solution Needed mL of Water Needed
30% 10  0
15% 5  5
3% 1  9
3% 1  9
9. Pour 150 mL of the remaining stock sucrose solution into Beaker 1.
10. Use some of the remaining stock sucrose solution to create an additional 200 mL of a 3% sucrose solution into Beaker 2.
Hint: Use your knowledge of serial dilutions to create this final, 3% sucrose solution.
11. Measure and pour 10 mL of the remaining 30% sucrose solution into the dialysis bag with the yellow rubber band. Seal the top of this tubing with the remaining yellow rubber band.
12. Measure and pour 10 mL of the 15% sucrose solution in the bag with the red rubber band, and seal the top of the dialysis tubing with the remaining red rubber band. 10 mL of the 3% sucrose solution in the bag with the blue rubber band, and seal the dialysis tubing with the remaining blue rubber band. The final 10 mL of 3% sucrose solution in the bag with the green rubber band. Seal the dialysis tubing with the remaining green rubber band.
13. Verify and record the initial volume of solution from each bag in Table 3.
 
Figure 8: The dialysis bags are filled with varying concentrations of sucrose solution and placed in one of two beakers.
14. Place the yellow, red, and blue banded tubing in Beaker 2. Place the green banded tubing in Beaker 1 (Figure 8).
15. Hypothesize whether water will flow in or out of each dialysis bag. Include your hypotheses, along with supporting scientific reasoning in the Hypotheses section at the end of this procedure.
16. Allow the bags to sit for one hour. While waiting, pour out the water in the 250 mL beaker that was used to soak the dialysis tubing in Step 1. You will use the beaker in Step 19.
17. After allowing the tubing to sit for one hour, remove them from the beakers.
18. Carefully open the tubing. The top of the tubing may need to be cut off/removed as they tend to dry out over the course of an hour. Measure the solution volumes of each dialysis bag using the 100 mL graduated cylinder. Make sure to empty and dry the cylinder completely between each sample. 
19. Record your data in Table 3.
Table 3: Sucrose Concentration vs. Tubing Permeability
Band Color Sucrose % Initial Volume (mL) Final Volume (mL) Net Displacement (mL)
Yellow       
Red       
Blue       
Green       
Hypothesis:

Post-Lab Questions
1. For each of the tubing pieces, identify whether the solution inside was hypotonic, hypertonic, or isotonic in comparison to the beaker solution in which it was placed.

2. Which tubing increased the most in volume? Explain why this happened.

 

3. What do the results of this experiment this tell you about the relative tonicity between the contents of the tubing and the solution in the beaker?
4. What would happen if the tubing with the yellow band was placed in a beaker of distilled water?

5. How are excess salts that accumulate in cells transferred to the blood stream so they can be removed from the body? Be sure to explain how this process works in terms of tonicity.

6. If you wanted water to flow out of a tubing piece filled with a 50% solution, what would the minimum concentration of the beaker solution need to be? Explain your answer using scientific evidence.

7. How is this experiment similar to the way a cell membrane works in the body? How is it different? Be specific with your response.

 

 

Order a unique copy of this paper
(550 words)

Approximate price: $22

Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Professor’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
  • 2-hour delivery
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

We value our customers and so we ensure that what we do is 100% original..
Getting into any engagement is not as simple as it sounds, especially when done remotely. Thus, you as our client need solid assurances that your expectations will be met and exceeded. Taking this into consideration, we are very serious when it comes to honoring our end of the bargain. On this page, we have clearly stipulated our assurances to clear any anxiety, doubts, or uncertainties that you may have. We are sure that after reading the below short guarantee highlights, you will be entirely confident that your needs will be exceeded!

Money-back guarantee

Our money-back guarantee assures you of the safety of your money. Several reasons may make you want to get a refund, and we have the best refund system since it works INSTANTLY! Yes, I said instantly! Many of our competitors place complex processes for you to get a refund. Some websites make you wait for 14 days! For what? We know that you obviously have other uses for the money; that is why we refund on the spot. Here at Employed Professors, we simply look into the issue and press a button, and your money is back. No waiting! No back and forth!

Zero-plagiarism guarantee

Being the worst academic offense that is severely punished by all institutions, plagiarism is a NO at Employed Professors! In fact, we are always ready with evidence that your paper is plagiarism-free.

Our elite algorithm for detecting plagiarism is updated regularly, as our developers work 24/7 to make sure that it captures even the slightest instance. We provide a plagiarism report FREE OF CHARGE so that you are confident when submitting your paper to that stickler professor or TA. This way, we ensure that you will never get expelled for this heinous act!

Free-revision policy

Sometimes, for absolutely no reason, your TA or professor might require you to make some changes to your paper. Other times, further customization can be needed as you deem fit; of course, you are the king, and you command, and we obey! As such, if you feel that a specific aspect has not been captured as you like, you can always send the paper back for revision, and this is also FREE OF CHARGE! All you need to clearly state are the new guidelines that you want our professor to use to accomplish your desired objective in the way that you want it.

Privacy policy

Our clients' confidentiality is our priority; this is a fact that is undeniable in our company. We CANNOT give out the data/information that we request from you even at GUNPOINT! This is how far we can go to protect your identity. Furthermore, our databases are regularly services and secured with an impenetrable security system. Over the years that we have been in this essential industry, we have never had a data breach, thanks to our top-notch technical department that ensure the confidentiality of your information. A detailed summary of our privacy policy is as below:

24/7 and on-the-spot-response system

Unlike our competitors who will make you wait even 30 minutes to respond to your inquiries, order messages, and support help, we have developed a seamless communication system that notifies our always-standby support personnel to respond to you. Furthermore, we have given our professors access to this high-tech system so that they can respond promptly to ensure that no time is wasted. Remember, this business' most valuable element is time, and delays are usually catastrophic. The last thing we would imagine is you having to lose points for lateness. Thus, we ensure that prompt communication is ever-present, without failure!

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency